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On the Singularity of Influence
Coefficients of the Externally
Pressurized Spherical Shells
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1. Introduction

THE influence coefficients of pressurized spherical shells
have been obtained by W. Nachbar,1 G. B. Cline2 and by

D. Bushnell.3 The numerical results for the externally pres-
surized spherical shells calculated by Bushnell show that the
influence coefficients have singularity near one-half the classi-
cal buckling pressure, whereas the stiffness coefficients behave
regular and nonzero. This indicates that the shell becomes
softer as the external pressure increases and it cannot carry
any load when the pressure reaches the value corresponding
to the singularity. A question may then arise; why are the
stiffness coefficients not zero? It is the intention of the pres-
ent Note to clarify the question. It turns out that the
singularity corresponds to the buckling at the edge of conical
shells whose edge slides and rotates freely on the constraining
surface of the conical shape. The conclusion may provide a
supplementary explanation to the numerical result obtained
recently by Baruch, Harari and Singer.4

2. Influence Coefficients
The basic nonlinear equations governing axisymmetric de-

formations of elastic thin shells of revolution have been
formulated by E. Reissner.5 The dependent variables may
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Fig. 1 Boundary condition
He = Mje = 0.

be represented as a Result of the superposition of quantities
belonging to the state of membrane stress and to that of
bending stress. The equations are linearized with respect to
the quantities belonging to the state of bending—taking the
effect of the membrane stresses into account. Solution of the
linearized equations; yields the following expressions for the
transverse shear resultant Q, the change of meridian tangent
ft, the horizontal component of stress resultant H, the merid-
ional moment M^, and for the horizontal displacement u:

Q ; = (Eh)(RiA + IiB)V (I)

where h is the thickness, a the radius, $ the meridional angle
measured from the axis of rotation of the shell, E Young's
modulus, D the bending rigidity of the shell, RI and /i are,
respectively, the real and imaginary parts of the Bessel func-
tion of the first kind of order one, A and B are constants, and
the prime indicates differentiation with respect to 4>.

Here, the following abbreviations have been introduced:

o - [12(1 - v*)]U*(a/h)u*

7i= pRi+ (1 - P2)1/2/i

72; = p/i- (1 - P2)1/2fli
[(1- 2P

2)£1 - 2p(l -

[(1 - 2p2)A + 2p(l -

-f v
- p2)1/2[(W + v

P2)1

(6)

(7)

(8a)
(8b)

(9a)
(9b)

(9c)

(9d)
where p is the ratio of the applied pressure to the classical
buckling pressure of complete spherical shells, and v is
Poisson's ratio.

It should be noted that the approximation

V = 0 (10)
has been made in the^derivation of the aforementioned expres-
sions. ;

The influence coefficients are now obtained by prescribing
the inhomogeneous boundary conditions, H = He and M<f> =
M^e, where the subscript e indicates the values at the edge

ue = CnHe -f /3e = (11)
The result is identica Ito that of Bushnell3 and it may be
written in the form

u = (a » cota)

where

A =

(12)

(13)
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Fig. 2 Boundary condition
Qae = M<t>e = 0.
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3. Eigenvalues

The eigenvalues for the following six cases of homogeneous
boundary conditions are investigated:

Case (i) He = 0, M^ = 0 (14)
The characteristic equation takes the form

SlS, - SA = 0 (15)
The left-hand side of Eq. (15) is equal to A. The influence
coefficients thus become indefinitely large at the value of the
pressure satisfying Eq. (15). Therefore, it is concluded that
the singularity in the influence coefficients corresponds to the
eigenvalue and, consequently, to the buckling pressure of the
spherical shell segment supported by the edge condition
characterized by Eqs. (14).

The stiffness coefficients Kih i,j = 1,2, are
KH = Cn/(CnCv - Ci2C2i) (16)

where Cij is the co-factor of C»/ in the determinant \dj\.
A simple calculation shows

72&)] (17)
Hence, A cancels out and Ki3- is not necessarily zero when
A = 0. The result is not surprising at all, because the buck-
ling deformations occur in the eigenmode, and, consequently,
ue and $e are linearly related and their ratio cannot be changed
arbitrarily. Therefore, the stiffness coefficients need not
vanish identically.

The boundary condition characterized by Eqs. (14) is quite
unrealistic except for hemispherical shells. As sketched in
Fig. 1, the shell slides and rotates freely on the constraining
surface of conical shape, which becomes horizontal when the
buckling occurs. In the case of the hemispherical shell the
constraining surface is always horizontal. The eigenvalue
p = 0.5 obtained for the hemispherical shell, therefore, cor-
responds to the buckling pressure of the hemispherical shell
with free edge. Because of the similarity of their behavior
near the edge, it can be anticipated that the axially compressed
circular cylindrical shell with free edge can buckle at one-half
the classical buckling pressure. This is the problem dis-
cussed by N. J. Hoff .6

Case (ii) Qae = 0, M^ = 0 (18)
where Qae is the component of the edge force in the radial
direction specified by the edge angle a.

Approximation consistent to Eq. (10) results in
Case Qae = - He sine* (19)

Therefore, in the present approximation, the boundary condi-
tion characterized by Eqs. (18) is identical to that charac-
terized by Eqs. (14). The present eigenvalue problem is a
realistic one. Here, the shell slides and rotates freely on the
constraining surface of conical shape during the entire process
of loading and buckling, Fig. 2.

Because of the similarity of their behavior near the edge, the
axisymmetric buckling of conical shells, which can slide and
rotate freely on the constraining surface of conical shape, can
be anticipated to occur at the pressure corresponding to the
eigenvalue of the present boundary value problem. The
corresponding conical shell is sketched by dashed lines in Fig.
2. This conclusion may provide a supplementary explana-
tion to the result of the recent investigation of Baruch,
Harari, Singer.4 They obtained the low buckling load of the
conical shell near p = 0.5 for the SS3 boundary condition,
which turned out to be similar to the free edge for that
buckling mode.

Case (iii) Qe = 0, M^ = 0
Case (iv) He = 0, ft = 0
Case (t;) ue = 0, M^ = 0
Case (vi) ue = 0, & = 0

The result of numerical computations showed that p = 1 is
the only eigenvalue for all these cases of boundary conditions.

References
1 Nachbar, W., "Discontinuity Stresses in Pressurized Thin

Shells of Revolution," LMSD-48483, Lockheed Missiles and
Space Div., Sunnyvale, Calif., March 1957.

2 Cline, G. B., "Effect of Internal Pressure on the Influence
Coefficients of Spherical Shells/' Journal of Applied Mechanics,
Vol. 30, Series E, No. 1, March 1963, pp. 91-97.

3 Bushnell, D., "Influence Coefficients for Externally Pres-
surized Spherical Shells," AIAA Journal, Vol. 4, No. 8, Aug.
1966, pp.1472-1474.

4 Baruch, M., Harari, O., and Singer, J., "Low Buckling Loads
of Axially Compressed Conical Shells," Journal of Applied
Mechanics, Vol. 37, Ser. E, No. 2, June 1970, pp. 384-392.

5 Reissner, E., "On Axisymmetrical Deformations of Thin
Shells of Revolution," Proceedings of a Symposium in Applied
Mathematics, Vol. Ill, McGraw-Hill, New York, 1950, pp. 27-52.

6 Hoff, N. J., "Buckling of Thin Shells," I AS Proceedings of an
Aerospace Scientific Symposium of Distinguished Lecturers in
Honor of Dr. Theodore von Kdrmdn on his 80th Anniversary, May
11, 1961, New York, pp. 1-85.

A Direct Modification Procedure for
the Displacement Method

J. H. ARGYRIS,* O. E. BRONLUND,! J. R.
AND D. W. SCHARPF§

Institut fur Statik und Dynamik der Luft- und
Raumfahrlkonstruktionen, University of Stuttgart,

Stuttgart, West Germany

Introduction

THE increased speed and capacity of modern computers
is permitting the solution of large nonlinear or optimiza-

tion problems using the Matrix Displacement Method. An
efficient modification procedure is an integral feature of the
required computer programs. When a relatively small por-
tion of the structure is to be modified at one time, or when
convergence difficulties are expected in an iterative approach,
a direct method1"5 can be recommended. In the original
Argyris approach,1'2 the changes in values of the elemental
stiffness matrix k are interpreted in terms of initial stresses
or loads. This method normally involves the triangulariza-
tion of a matrix of size equal to the number of changed rows
in k according to the natural element freedoms, and has
special application for the elastoplastic problem, as shown
in Ref. 3. Sobieszczanski4 has presented a competitive
method for the case of successive independent modifications
to a structure. Since the method requires element flexibility
matrices, its use in conjunction with existing Displacement
Method programs would involve considerable programing
effort. Also, this technique is not especially suited to the
elastoplastic problem, where all the previously modified
members must be modified anew after each load increment.

The size of the modifications matrices can often be con-
siderably reduced if changes are made directly with respect
to the global stiffness matrix K of the structure. Earlier at-
tempts in this direction presumed that K was partitioned into
modified and unmodified parts. Even if this transformation

(20)

Received February 22, 1971; revision received March 29, 1971.
Index Category: Structural Static Analysis.
* Director. Associate Fellow AIAA.
t Group Leader of the Dynamic Analysis Team.
t Senior Member of the Automatic System for Kinematic
Analysis Team.
§ Group Leader of Discretization Team.


